Exploratory Data Analysis with Python Online Course

Sale price€450.00

Exploratory Data Analysis (EDA) involves multiple techniques that extract meaningful information and valuable insights from the data. The main purpose of EDA is to investigate datasets to reveal the underlying structures and the challenges and opportunities that come with data without attempting to make predictions using machine learning models. EDA is the first attempt in data mining and the first exercise to make further decisions. It is a critical phase in any data analysis or data science project by generating summary statistics in a dataset as well as constructing various graphical representations to help understand the hidden knowledge of data and answer the businesses' questions of why and how.

TechClass Exploratory Data Analysis with Python online course will introduce you to the practical knowledge and the main pillars of EDA, including data exploration, data preparation, visualization, data relationships, and clustering using Python programming language. Apart from the intuitions, you will get familiar with how EDA steps are implemented by various Python libraries such as NumPy, Pandas, Matplotlib, and Scikit-learn. By the end of this course, you will be prepared to enter the fantastic world of data analysis towards amazing job opportunities in the industry.

Learning outcomes

  • Learn the general framework of EDA and why it is important
  • Get hands-on experience with NumPy and Pandas Library
  • Learn the general concepts of descriptive statistics and how to extract them using the Pandas library
  • Learn how to plot various visualizations to extract meaningful insights from data using Matplotlib and Seaborn libraries
  • Get familiar with standard practices of data preparation
  • Learn how to treat missing values and outlier detection,
  • Learn how to perform feature engineering
  • Get familiar with the general framework of data relationships and learn the intuitions behind correlation analysis
  • Learn about feature scaling and how to implement it in Python
  • Learn about feature encoding and how to implement it in Python
  • Learn how to group by dataset to extract insight from data
  • Learn how to perform dimensionality reduction to represent and visualize data in lower-dimensional space
  • Learn how to identify group patterns and perform clustering using the k-Means method

Table of contents

Chapter 1: Intro to Course 

  • 1.1. Welcome! 
  • 1.2. About TechClass Data Science Department 
  • 1.3. Learning Outcomes 
  • 1.4. Your Expectations, Goals, and Knowledge
  • 1.5. Abbreviations
  • 1.6. Copyright Notice

Chapter 2: Introduction

  • 2.1. Introduction to Data Science
  • 2.2. Data Science Workflow
  • 2.3. Data
  • 2.4. Sources of Data
  • 2.5. What Is Exploratory Data Analysis?
  • 2.6. Python Libraries for EDA

Chapter 3: Describing Data

  • 3.1. Introduction
  • 3.2. Observations and Variables
  • 3.3. Categorical Variables
  • 3.4. Quantitative Variables
  • 3.5. Central Tendency
  • 3.6. Data Variability
  • 3.7. Distribution Functions

Chapter 4: Importing Data

  • 4.1. Introduction
  • 4.2. Vectors and Matrices
  • 4.3. NumPy Arrays
  • 4.4. Working with NumPy Arrays
  • 4.5. Loading Data with NumPy
  • 4.6. Pandas Series
  • 4.7. Working with Series
  • 4.8. Pandas DataFrame
  • 4.9. Working with DataFrames
  • 4.10. Exercise

Chapter 5: Data Exploration

  • 5.1. Extracting Descriptive Statistics
  • 5.2. Extracting Descriptive Statistics: Preliminaries
  • 5.3. Extracting Descriptive Statistics: Implementation
  • 5.4. Mathematical Operations on DataFrame
  • 5.5. Applying Functions to DataFrame
  • 5.6. Querying a DataFrame
  • 5.7. Filtering Data
  • 5.8. Groupby
  • 5.9. Cross Tabulation

Chapter 6: Data Visualization

  • 6.1. Univariate Analysis
  • 6.2. Histogram
  • 6.3. Frequency Polygons
  • 6.4. Boxplot
  • 6.5. Bar Chart
  • 6.6. Pie Chart
  • 6.7. Bivariate Analysis
  • 6.8. Scatter Plot
  • 6.9. Hexbins
  • 6.10. Stacked Column Chart

Chapter 7: Data Preparation

  • 7.1. Introduction
  • 7.2. Incorrect Values and Categories
  • 7.3. Feature Engineering: Creating New Features
  • 7.4. Outlier Detection: Univariant
  • 7.5. Outlier Detection: Multivariant
  • 7.6. Removing Missing Values
  • 7.7. Imputing Missing Values: Mean/Mode Imputation
  • 7.8. Imputing Missing Values: K-NN Imputation
  • 7.9. Feature Encoding: Label Encoding
  • 7.10. Feature Encoding: One-Hot Encoding
  • 7.11. Feature Scaling: Normalization
  • 7.12. Feature Scaling: Standardization

Chapter 8: Data Relationships

  • 8.1. Introduction
  • 8.2. Covariance Matrix
  • 8.3. Correlation
  • 8.4. Heatmap of Correlation Matrix
  • 8.5. Non-linear Relationship
  • 8.6. Hypothesis Testing

Chapter 9: Identifying and Understanding Groups

  • 9.1. Introduction
  • 9.2. Clustering
  • 9.3. Hierarchical Clustering
  • 9.4. K-Means Clustering

Chapter 10: Next Steps

  • 10.1. What’s More?
  • 10.2. EDA for Text Data
  • 10.3. Model Development and Evaluation

Chapter 11: Final Tasks

  • 11.1. Project
  • 11.2. Self-study Essay

Chapter 12: Finishing the Course

  • 12.1. What We Have Learned
  • 12.2. Where to Go Next?
  • 12.3. Your Opinion Matters
  • 12.4. Congrats! You did it!


 Press the "Fullscreen" button to view in fullscreen.

Payment & Security

Payment methods

American Express Apple Pay Mastercard PayPal Visa

Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.


Customer Reviews

Based on 4 reviews
Hannah Lee
jam-packed course

I think the course was interesting and complete. It was very good for me that the concepts were explained step by step, and the concepts were taught with simple code snippets.

Rosie Brown
Love this course

This course was beneficial for me. Previously, I only drew a few diagrams to understand the data better, but now I have learned other important concepts, such as the relationship between features and their clustering. I recommend it to others!

Alejandro Perez
Thnaks TechClass for this course

I really liked this course both in terms of content and illustrations. The exercises and quizzes were also good for me and made me learn even beyond the content produced.

Cristhian Elizeche
overall i liked it

Very interesting course, better done when in an academic context and with an ongoing project to carry out the exercices for.

You may also like

Recently viewed